Abstract

If a hyperbolic 3-manifold admits an exceptional Dehn filling, then the length of the slope of that Dehn filling is known to be at most six. However, the bound of six appears to be sharp only in the toroidal case. In this paper, we investigate slope lengths of other exceptional fillings. We construct hyperbolic 3-manifolds that have the longest known slopes for reducible fillings. As an intermediate step, we show that the problem of finding the longest such slope is equivalent to a problem on the maximal density horoball packings of planar surfaces, which should be of independent interest. We also discuss lengths of slopes of other exceptional Dehn fillings, and prove that six is not realized by a slope corresponding to a small Seifert fibered space filling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.