Abstract

In this paper, we initiate the study of ${\mathcal{P}} R$-warped products in para-K a hler manifolds and prove some fundamental results on such submanifolds. In particular, we establish a general optimal inequality for ${\mathcal{P}}R$-warped products in para-K a hler manifolds involving only the warping function and the second fundamental form. Moreover, we completely classify ${\mathcal{P}} R$-warped products in the flat para-K a hler manifold with least codimension which satisfy the equality case of the inequality. Our results provide an answer to the Open Problem (3) proposed in [19, Section 5].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.