Abstract

Abstract The characterization of Kirkwood-Dirac (KD) classicality or non-classicality is very important in quantum information processing. In general, the set of KD classical states with respect to two bases is not a convex polytope[J. Math. Phys. \textbf{65} 072201 (2024)], which makes us interested in finding out in which circumnstances they do form a polytope. In this paper, we focus on the characterization of KD classicality of mixed states for the case where the transition matrix between two bases is a discrete Fourier transform (DFT) matrix in Hilbert space with dimensions $p^2$ and $pq$, respectively, where $p, q$ are prime. For the two particular cases we investigate, the sets of extremal points are finite, implying that the set of KD classical states we characterize forms a convex polytope. We show that for $p^2$ dimensional system, the set $\rm{KD}_{\mathcal{A},\mathcal{B}}^+$ is a convex hull of the set $\rm {pure}({\rm {KD}_{\mathcal{A},\mathcal{B}}^+})$ based on DFT, where $\rm{KD}_{\mathcal{A},\mathcal{B}}^+$ is the set of KD classical states with respect to two bases and $\rm {pure}({\rm {KD}_{\mathcal{A},\mathcal{B}}^+})$ is the set of all the rank-one projectors of KD classical pure states with respect to two bases. In $pq$ dimensional system, we believe that this result also holds. Unfortunately, we do not completely prove it, but some meaningful conclusions are obtained about the characterization of KD classicality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.