Abstract

We study homogeneous convex cones. We first characterize the extreme rays of such cones in the context of their primal construction (due to Vinberg) and also in the context of their dual construction (due to Rothaus). Then, using these results, we prove that every homogeneous cone is facially exposed. We provide an alternative proof of a result of Guler and Tunc el that the Siegel rank of a symmetric cone is equal to its Caratheodory number. Our proof does not use the Jordan-von Neumann-Wigner characterization of the symmetric cones but it easily follows from the primal construction of the homogeneous cones and our results on the geometry of homogeneous cones in primal and dual forms. We study optimal self-concordant barriers in this context. We briefly discuss the duality mapping in the context of automorphisms of convex cones and prove, using numerical integration, that the duality mapping is not an involution on certain self-dual cones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.