Abstract

We consider planar directed last-passage percolation on the square lattice with general i.i.d. weights and study the geometry of the full set of semi-infinite geodesics in a typical realization of the random environment. The structure of the geodesics is studied through the properties of the Busemann functions viewed as a stochastic process indexed by the asymptotic direction. Our results are further connected to the ergodic program for and stability properties of random Hamilton–Jacobi equations. In the exactly solvable exponential model, our results specialize to give the first complete characterization of the uniqueness and coalescence structure of the entire family of semi-infinite geodesics for any model of this type. Furthermore, we compute statistics of locations of instability, where we discover an unexpected connection to simple symmetric random walk.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call