Abstract

Deep neural networks are workhorse models in machine learning with multiple layers of nonlinear functions composed in series. Their loss function is highly nonconvex, yet empirically even gradient descent minimization is sufficient to arrive at accurate and predictive models. It is hitherto unknown why deep neural networks are easily optimizable. We analyze the energy landscape of a spin glass model of deep neural networks using random matrix theory and algebraic geometry. We analytically show that the multilayered structure holds the key to optimizability: Fixing the number of parameters and increasing network depth, the number of stationary points in the loss function decreases, minima become more clustered in parameter space, and the trade-off between the depth and width of minima becomes less severe. Our analytical results are numerically verified through comparison with neural networks trained on a set of classical benchmark datasets. Our model uncovers generic design principles of machine learning models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call