Abstract

Slime mould Physarum polycephalum propagates on nutrient substrates similarly to auto-waves in nonlinear media. In experimental laboratory studies we uncover that the width of geometrically constrained substrate affects the speed of Physarum propagation. We show that Physarum slows down when the width of the substrate increases. The slime mould propagates quicker from the vertex of a triangle to its base than from the base to the vertex. Physarum grows quicker in narrow channels than in wider channels. One can also slow down Physarum propagation by making a finite size expansion of the otherwise narrow channel. In computational experiments with a binary state cellular automaton model we demonstrate that a limitation on the slime mould's body mass production rate could be an underlying mechanism for the width-dependent slowdown of Physarum propagation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.