Abstract

In depth discontinuous and untextured regions, depth maps created by multiple view stereopsis are with heavy noises, but existing depth map fusion methods cannot handle it explicitly. To tackle the problem, two novel strategies are proposed: 1) a more discriminative fusion method, which is based on geometry consistency, measuring the consistency, and stability of surface geometry computed on both partial and global surfaces, different from traditional methods only using visibility consistency; 2) a graph optimization method which fuses pyramids of depth maps as mutual complementary information is available in different scales, and differs from existing multi-scale fusion methods. The method considers both sampling scale of a point and relations among points, and is proven to be solvable by graph cuts. Experimental results verify the superior performance of the proposed method to the traditional visibility consistency-based methods, and the proposed method is also compared favorably with a number of state-of-the-art methods. Moreover, the proposed method achieves the highest completeness among all the methods compared.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.