Abstract

Cable dome is a typical flexible structural system. Its initial geometry determines the prestress distribution and affects the structural performance. Using geometric parameters to establish the mechanical equation of initial state can effectively realize the geometric-force interactive design and optimization of cable dome structure. Consequently, a standardized equation is established in this paper to uniformly express the geometric-force relationship, utilizing a feasible prestress distribution function expressed by geometric parameters. Subsequently, an interactive design method for initial geometry and prestress is presented. The proposed method is theoretically expounded in terms of geometric design, prestress design and shape optimization. Two typical cable dome cases, Geiger and Levy, are successfully applied to accomplish the geometric-force design and optimization of the initial state. The results show that the efficient design of initial state can be completed by establishing the interaction between geometry and force without repeated algebraic calculation. The optimized initial geometry can significantly improve the Structural stiffness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call