Abstract

Thermal striping is of particular significance in nuclear reactor applications, primarily in sodium cooled fast reactors. The mixing chamber of the upper plenum of a nuclear reactor can be subjected to thermal striping unless designed such that the coolant is sufficiently mixed prior to reaching the top wall of the upper plenum. In order to conduct a systematic analysis of this phenomenon a simplified experimental set-up was designed and built at Argonne National Laboratory. In a parallel effort a similar simulation was conducted using the spectral-element code Nek5000. The set-up consists of two turbulent jets entering a rectangular tank via two hexagonal inlets, the interesting phenomena being the mixing within the tank. Two different inlet geometries were studied previously, both experimentally and via high-fidelity large-eddy simulations reporting various turbulent statistical quantities. To further assess the flow behavior we hereby perform a Proper Orthogonal Decomposition (POD) to identify the most dominant energetic modes and quantify their impact on the top wall of the upper plenum. The POD analysis of the experimental data in both inlet geometrical configurations is compared with LES and presented to highlight the impact of geometry on the velocity and thermal fields. We find a qualitative coherence between both simulation and experiment, characterized by a strong backflow in the weakly stable geometry, as indicated by the first mode, and the presence of three stagnation points in the strongly stable geometry setup. Also we identify a pairing of modes 1 and 3 with higher frequency than the second mode. This pairing is opposite in the two flow configurations leading to a faster decay of one of the jets in one case and a stable flow in the other.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.