Abstract

Light-harvesting complexes (LHC) in photosynthetic organisms perform the major function of light absorption and energy transportation. Optical spectrum of LHC provides a detailed understanding of the molecular mechanisms involved in the excitation energy transfer (EET) processes, which has been widely studied. Here, we study how the geometric property of LHC in Rhodospirillum (Rs.) molischianum would affect its spectral characteristics and energy transfer process. By adopting the effective Hamiltonian and the dipole-dipole approximation, we calculate the exciton level structures for the LH2 ring and LH1 ring and the energy transfer time between different LHCs under various structural parameters and different rotational symmetries. Our numerical results show that the LHC's absorption peaks and the energy transfer time between different LHCs can be modified by changing the geometric configurations. Our study may be beneficial to the applications in designing highly efficient photovoltaic cell and other artificial photosynthetic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call