Abstract

We demonstrate the use of a new vibrational transition density cube (VTDC) method for determining the geometry of complexes in a molecular liquid mixture from electron-vibration-vibration two-dimensional infrared (EVV 2DIR) spectra. The VTDC method was used to calculate the electrically-mediated intermolecular vibrational coupling and thereby the EVV 2DIR spectra. Using the 1:1 benzonitrile-phenylacetylene (BN-PA) liquid mixture as a test case, the new method leads to a distance of 3.60 Å between the interacting BN-PA pair, a much more accurate value than the distance previously obtained using a dipolar approximation for the electrical coupling. We also show that molecular dynamics simulations of the liquid mixture predict a modal geometry of complexation which agrees well with the geometry determined from the 2DIR data via VTDC analysis. We therefore conclude the combination of VTDC and EVV 2DIR data is a useful approach for the determination of the geometry of molecular complexes in the condensed phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.