Abstract

Light-induced oscillatory behavior of liquid crystal polymer network (LCN) films has been demonstrated by several researchers in the past decade. Similarly, oscillations in LCN films under constant thermal stimulus have been reported recently, although the mechanism and the factors that govern the oscillatory behavior are not well understood. In this work, we study the dynamics of self-sustained oscillations exhibited by LCN films under a constant thermal stimulus through experiments and simulations. Geometrically asymmetric films such as a right triangle and an equilateral triangle are obtained from a twisted nematic square film. A multiphysics computational framework using the finite element method is developed to simulate the oscillatory behavior of the LCN films kept on a hot plate. The framework accounts for a coupling between heat transfer and mechanical deformations during the oscillations. Small temperature fluctuations (≈ 1 °C) coupled with gravity induced torque are shown to drive the oscillatory behavior at a specific plate temperature. We show for the first time that self-sustained oscillations can also be achieved in symmetric shapes, such as square films, by creating a thickness tapering between two opposite edges. The frequency of the oscillations is found to be in the range of 0.5 to 2.5 Hz for different geometries studied. The oscillation temperature depends on the mean thickness, size, and thickness profile of the films. As a possible application, we demonstrate a thermally actuated optical chopper using the oscillatory response of the films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call