Abstract
Unsupervised domain mapping aims to learn a function GXY to translate domain to in the absence of paired examples. Finding the optimal G XY without paired data is an ill-posed problem, so appropriate constraints are required to obtain reasonable solutions. While some prominent constraints such as cycle consistency and distance preservation successfully constrain the solution space, they overlook the special properties of images that simple geometric transformations do not change the image's semantic structure. Based on this special property, we develop a geometry-consistent generative adversarial network (Gc-GAN), which enables one-sided unsupervised domain mapping. GcGAN takes the original image and its counterpart image transformed by a predefined geometric transformation as inputs and generates two images in the new domain coupled with the corresponding geometry-consistency constraint. The geometry-consistency constraint reduces the space of possible solutions while keep the correct solutions in the search space. Quantitative and qualitative comparisons with the baseline (GAN alone) and the state-of-the-art methods including CycleGAN [66] and DistanceGAN [5] demonstrate the effectiveness of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings. IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.