Abstract

Conventional intraoperative computed tomography (CT) has a long scan time, degrading the image quality. Its large size limits the position of a surgeon during surgery. Therefore, this study proposes a CT system comprising of eight carbon-nanotube (CNT)-based x-ray sources and 16 detector modules to solve these limitations. Gantry only requires 45° of rotation to acquire the whole projection, reducing the scan time to 1/8 compared to the full rotation. Moreover, the volume and scan time of the system can be significantly reduced using CNT sources with a small volume and short pulse width and placing a heavy and large high-voltage generator outside the gantry. We divided the proposed system into eight subsystems and sequentially devised a geometry calibration method for each subsystem. Accordingly, a calibration phantom consisting of four polytetrafluoroethylene beads, each with 15 mm diameter, was designed. The geometry calibration parameters were estimated by minimizing the difference between the measured bead projection and the forward projection of the formulated subsystem. By reflecting the estimated geometry calibration parameters, the projection data were obtained via rebinning to be used in the filtered-backprojection reconstruction. The proposed calibration and reconstruction methods were validated by computer simulations and real experiments. Additionally, the accuracy of the geometry calibration method was examined by computer simulation. Furthermore, we validated the improved quality of the reconstructed image through the mean-squared error (MSE), structure similarity (SSIM), and visual inspections for both the simulated and experimental data. The results show that the calibrated images, reconstructed by reflecting the calibration results, have smaller MSE and higher SSIM values than the uncalibrated images. The calibrated images were observed to have fewer artifacts than the uncalibrated images in visual inspection, demonstrating that the proposed calibration and reconstruction methods effectively reduce artifacts caused by geometry misalignments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call