Abstract

In this paper, a geometry-based image retrieval system is developed for multi-object images. We model both shape and topology of image objects using a structured representation called curvature tree (CT). The hierarchy of the CT reflects the inclusion relationships between the image objects. To facilitate shape-based matching, triangle-area representation (TAR) of each object is stored at the corresponding node in the CT. The similarity between two multi-object images is measured based on the maximum similarity subtree isomorphism (MSSI) between their CTs. For this purpose, we adopt a recursive algorithm to solve the MSSI problem and a very effective dynamic programming algorithm to measure the similarity between the attributed nodes. Our matching scheme agrees with many recent findings in psychology about the human perception of multi-object images. Experiments on a database of 13500 real and synthesized medical images and the MPEG-7 CE-1 database of 1400 shape images have shown the effectiveness of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.