Abstract

This paper investigates the application of conventional and neural adaptive control schemes to Gas Metal Arc (GMA) welding. The goal is to produce welds of high quality and strength. This can be achieved through proper on-line control of the geometrical and thermal characteristics of the process. The welding process is variant in time and strongly nonlinear, and is subject to many defects due to improper regulation of parameters like arc voltage and current, or travel speed of the torch. Adaptive control is thus naturally a very good candidate for the regulation of the geometrical and thermal characteristics of the welding process. Here four adaptive control techniques are reviewed and tested, namely: model reference adaptive control (MRAC), pseudogradient adaptive control (PAC), multivariable self-tuning adaptive control (STC), and neural adaptive control (NAC). Extensive numerical results are provided, together with a discussion of the relative merits and limitations of the above techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.