Abstract

To determine the relative importance of the confining geometry and nanoscopic length scale versus water/interface interactions, the dynamic interactions between water and interfaces are studied with ultrafast infrared spectroscopy. Aerosol OT (AOT) is a surfactant that can form two-dimensional lamellar structures with known water layer thickness as well as well-defined monodispersed spherical reverse micelles of known water nanopool diameter. Lamellar structures and reverse micelles are compared based on two criteria: surface-to-surface dimensions to study the effect of confining length scales, and water-to-surfactant ratio to study water/interface interactions. We show that the water-to-surfactant ratio is the dominant factor governing the nature of water interacting with an interface, not the characteristic nanoscopic distance. The detailed structure of the interface and the specific interactions between water and the interface also play a critical role in the fraction of water molecules influenced by the surface. A two-component model in which water is separated into bulk-like water in the center of the lamellar structure or reverse micelle and interfacial water is used to quantitatively extract the interfacial dynamics. A greater number of perturbed water molecules are present in the lamellar structures as compared to the reverse micelles due to the larger surface area per AOT molecule and the greater penetration of water molecules past the sulfonate head groups in the lamellar structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.