Abstract

Vein-related data have been collected around the giant Rio Tinto orebody in southern Spain within the root zones of the massive sulphide deposits. Here, we report the main results of this study, concerning the geometry of the stockwork and the conditions of formation. Although field and thin-section studies have shown that a wide range of vein configurations exist, from micro cracks (fluid-inclusion planes) to large paleo-flow channels, two groups seem to dominate. The first corresponds to small, constricted micro cracks and capillary-flow channels, now mainly filled with quartz, whereas the veins of the second group have large widths, are continuous over several meters and are filled with quartz and sulphides. Most are tension veins and only very few ( quartz) tends to post-date the quartz-dominated veins (quartz > pyrite). The vein-thickness and -spacing distribution is modal rather than logarithmic, and their densities are not fractal, but are characterized by a Poisson distribution. From the immediate sub-surface zone to more than 100 m below the base of the massive sulphide deposits, most hydrothermal quartz-sulphide stockwork veins are sub-parallel to the base of the massive sulphide deposit. The assumption that the base of this deposit corresponds to a paleo-horizontal plane, implies that most veins were sub-horizontal. This is particularly evident for small veins, but the larger ones can be strongly oblique to the base of the deposit. The hydrothermal fluids that generated the massive sulphide deposits and underlying stockworks, were very saline and probably underwent sub- or super-critical phase separation in the root zones of the system. This phase separation was the probable mechanism producing the periodic over-pressures of at least 20 MPa that were necessary to generate the sub-horizontal veins of the stockworks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call