Abstract

The depositional architecture and the geometric relationships between platform-slope deposits and basinal sediments along with paleontological evidence indicate the time interval of the younger Anisian Reitziites reitzi ammonoid zone to largely represent the main stage of platform aggradation at the Cernera and Bivera/Clapsavon carbonate platforms. Published and new U-Pb age data of zircons from volcaniclastic layers bracketing the stratigraphic interval of platform growth constrain the duration of platform evolution to a time span shorter than 1.8±0.7m.y., probably in the order of 0.5-1m.y., reflecting fast rates of vertical platform aggradation exceeding 500 m/m.y. In the range of growth potentials for shallow-water carbonate systems estimated in relation to the time span of observation, this high rate is in agreement with values for short intervals of 105-106yrs (e.g., Schlager 1999). After drowning, the platforms at Cernera and Bivera/Clapsavon were blanketed by thin pelagic carbonates. On the former platform flanks the draping sediments in places comprise red nodular pelagic limestones (Clapsavon Limestone) similar in facies to the Han Bulog Limestones occurring elsewhere in Middle Triassic successions of the Mediterranean Tethys. The drowning of vast areas of former carbonate platforms possibly triggered the onset of bottom-water circulation in adjacent basins as suggested by the abrupt transition from laminated to bioturbated pelagic nodular limestones in the Buchenstein Formation which occurred close to the time of initial platform submergence. During the Late Ladinian the topographic features of the drowned platforms were onlapped by rapidly deposited, predominantly clastic successions including coarse breccias and volcanic rocks sealing and preserving the peculiar stratigraphic setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.