Abstract

We suggest a geometric approach to quantisation of the twisted Poisson structure underlying the dynamics of charged particles in fields of generic smooth distributions of magnetic charge, and dually of closed strings in locally non-geometric flux backgrounds, which naturally allows for representations of nonassociative magnetic translation operators. We show how one can use the 2-Hilbert space of sections of a bundle gerbe in a putative framework for canonical quantisation. We define a parallel transport on bundle gerbes on $\mathbb{R}^d$ and show that it naturally furnishes weak projective 2-representations of the translation group on this 2-Hilbert space. We obtain a notion of covariant derivative on a bundle gerbe and a novel perspective on the fake curvature condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.