Abstract
Fundamental concepts, symmetries and dynamic equations of the theory of dark matter are derived from the simple relation: everything in the concept of space and the concept of space in everything. It is shown that the electromagnetic field is the singlet state of the dark matter field and, hence, the last may be considered as a generalized electromagnetic field (shortly gef) and a simple solution is given to the old problem of connecting the electromagnetic field with geometric properties of the physical manifold itself. It is shown that gauge fixing renders the generalized electromagnetic field effectively massive while the Maxwell electromagnetic field remains massless. To learn more about interactions between matter and dark matter on the microscopic level (and to recognize the fundamental role of internal symmetry in this case), the general covariant Dirac equation is derived and its natural generalization is considered. The experiment is suggested to test the formulated theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.