Abstract

As the number of experimentally solved protein structures rises, it becomes increasingly appealing to use structural information for predictive tasks involving proteins. Due to the large variation in protein sizes, folds and topologies, an attractive approach is to embed protein structures into fixed-length vectors, which can be used in machine learning algorithms aimed at predicting and understanding functional and physical properties. Many existing embedding approaches are alignment based, which is both time-consuming and ineffective for distantly related proteins. On the other hand, library- or model-based approaches depend on a small library of fragments or require the use of a trained model, both of which may not generalize well. We present Geometricus, a novel and universally applicable approach to embedding proteins in a fixed-dimensional space. The approach is fast, accurate, and interpretable. Geometricus uses a set of 3D moment invariants to discretize fragments of protein structures into shape-mers, which are then counted to describe the full structure as a vector of counts. We demonstrate the applicability of this approach in various tasks, ranging from fast structure similarity search, unsupervised clustering and structure classification across proteins from different superfamilies as well as within the same family. Python code available at https://git.wur.nl/durai001/geometricus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.