Abstract

A first known investigation on the geometrically nonlinear large deformation behavior of triangular carbon nanotube (CNT) reinforced functionally graded composite plates under transversely distributed loads is investigated. The analysis is carried out using the element-free IMLS-Ritz method. In this study, the first-order shear deformation theory (FSDT) and von Kármán assumption are employed to account for transverse shear strains, rotary inertia and moderate rotations. A convergence study is conducted by varying the supporting size and number of nodes. The effects of transverse shear deformation, CNT distribution and CNT volume fraction on the nonlinear bending characteristics under different boundary conditions are examined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.