Abstract

The nonlinear dynamic responses of a nanocomposite organic solar cell (NCOSC) are developed through the classical plate theory. The investigated NCOSC consists of five layers which are including Al, P3HT: PCBM, PEDOT: PSS, IOT and glass. A uniformly distributed external excitation is exerted on the simply supported NCOSC. The impacts of the Winkler-Pasternak elastic foundation, thermal environment and damping on the nonlinear dynamic responses of the NCOSC are investigated. The equations of motion and geometric compatibility of the NCOSC with the consideration of the von Kármán nonlinearity are derived. The governing equation of the dynamic system is formulated by employing the Galerkin and the fourth-order Runge-Kutta methods. Several numerical experiments are thoroughly presented to report the effects of damping ratio, temperature variations, and elastic foundation parameters on the frequency–amplitude curves and nonlinear dynamic response of the NCOSC. The numerical studies indicate that the existence of the Winkler-Pasternak elastic foundation effectively reduces the dynamic response of the NCOSC. In addition, the damping and thermal variation depress the vibration of the NCOSC but with relatively less efficiency compared with the Winkler- Pasternak elastic foundation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.