Abstract
This paper establishes a geometrically nonlinear bending analysis framework using the deep energy method and the classical laminated plate theory (CLPT) for laminated plates. Inspired by the transfer learning technique, a load applied to a laminated plate can be divided into multiple load steps. The network parameters for the current load step, with the exception of the initial step, are initialized by inheriting values from their preceding steps. Including both von Kármán and Green-Lagrange strains, the plate strains are computed using the automatic differentiation and integrated along the thickness direction per laminate plate based on the constitutive theory. By combining the outputs of neural network, the external potential energy can be obtained, and the optimized network parameters are given by minimizing the total system potential energy of the laminated plate. In order to validate the proposed approach, several numerical examples are calculated, and the present solutions are compared with those given by the literature and the Finite Element Analysis (FEA). The results show that the proposed approach is indeed feasible, can reach high levels of precision under varying loads while offering a simplified calculation strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.