Abstract

This article presents geometrically nonlinear forced vibration analysis of an axially functionally graded (AFG) non-uniform beam resting on an elastic foundation. The mathematical formulation is displacement based and derivation of governing equations is accomplished following Hamilton's principle. The foundation has been mathematically incorporated into the analysis as a set of linear springs. According to the basic assumption of the present method force equilibrium condition is satisfied at a maximum excitation amplitude value. Thus, the dynamic problem is equivalently represented as a static one, which is solved by following a numerical implementation of the Broyden method. It is a method that utilizes the Jacobian matrix and subsequent correction of the initial Jacobian to solve a system of nonlinear equations. The large amplitude dynamic behaviour of the system in terms of non-dimensional frequency response curves is validated against established results and new results are furnished for a parabolic tapered AFG beam on a linear elastic foundation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call