Abstract

We present a numerical methodology to compute the Nye-tensor fingerprints of dislocation loop absorption at grain boundaries (GBs) for comparison with TEM observations of irradiated polycrystals. Our approach links atomistic simulations of self-interstitial atom (SIA) prismatic loops gliding toward and interacting with GBs in body-centered cubic iron with experimentally extracted geometrically necessary dislocation (GND) maps to facilitate the interpretation of damage processes. The Nye-tensor analysis is strongly mesh-size dependent---corresponding to resolution-dependent TEM observations. The method computes GND fingerprints from discretized dislocation line segments extracted from molecular dynamics simulations of dislocation loops being absorbed at a GB. Specifically, we perform MD simulation of prismatic loops of two diameters and monitor the three stages of the absorption process: loop glide, the partial, and full absorption of the loops at a [1 0 0] symmetric tilt GB. These methods provide a framework for future investigations of the nature of defect absorption by grain boundaries under irradiation conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.