Abstract

We report the observation of a structurally induced doping compensation mechanism in doped semiconductor nanowires that results from the reduced size geometry. This kind of compensation can significantly affect the electronic transport properties of the doped nanowires. We demonstrate that in a crystalline n-type doped Ge wire, compensated by the acceptor-like localized surface states, strong electron-electron interactions occur. Variable range hopping conduction detected in these nanowires is directly generated from strong interactions, exhibiting an unusual large Coulomb gap in the density of states of wires.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.