Abstract

Abstract Land, ocean, and atmospheric models are often implemented on different spherical grids. As a conseqence coupling these model components requires state variables and fluxes to be regridded. For some variables, such as fluxes, it is paramount that the regridding algorithm is conservative (so that energy and water budget balances are maintained) and monotone (to prevent unphysical values). For global applications the cubed-sphere grids are gaining popularity in the atmospheric community whereas, for example, the land modeling groups are mostly using the regular latitude–longitude grid. Most existing regridding schemes fail to take advantage of geometrical symmetries between these grids and hence accuracy of the calculations can be lost. Hence, a new Geometrically Exact Conservative Remapping (GECoRe) scheme with a monotone option is proposed for remapping between regular latitude–longitude and gnomonic cubed-sphere grids. GECoRe is compared with existing remapping schemes published in the meteorological literature. It is concluded here that the geometrically exact scheme significantly improves the accuracy of the resulting remapping in idealized test cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.