Abstract

Integration of rigid components in soft polymer matrix is considered as the most feasible architecture to enable stretchable electronics. However, a method of suppressing cracks at the interface between soft and rigid materials due to excessive and repetitive deformations of various types remains a formidable challenge. Here, we geometrically engineered Ferris wheel–shaped islands (FWIs) capable of effectively suppressing crack propagation at the interface under various deformation modes (stretching, twisting, poking, and crumpling). The optimized FWIs have notable increased strain at failure and fatigue life compared with conventional circle- and square-shaped islands. Stretchable electronics composed of various rigid components (LED and coin cell) were demonstrated using intrinsically stretchable printed electrodes. Furthermore, electronic skin capable of differentiating various tactile stimuli without interference was demonstrated. Our method enables stretchable electronics that can be used under various geometrical forms with notable enhanced durability, enabling stretchable electronics to withstand potentially harsh conditions of everyday usage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.