Abstract
In this article, we present an optimization-based framework for multicopter trajectory planning subject to geometrical configuration constraints and user-defined dynamic constraints. The basis of the framework is a novel trajectory representation built upon our novel optimality conditions for unconstrained control effort minimization. We design linear-complexity operations on this representation to conduct spatial–temporal deformation under various planning requirements. Smooth maps are utilized to exactly eliminate geometrical constraints in a lightweight fashion. A variety of state-input constraints are supported by the decoupling of dense constraint evaluation from sparse parameterization and the backward differentiation of flatness map. As a result, this framework transforms a generally constrained multicopter planning problem into an unconstrained optimization that can be solved reliably and efficiently. Our framework bridges the gaps among solution quality, planning efficiency, and constraint fidelity for a multicopter with limited resources and maneuvering capability. Its generality and robustness are both demonstrated by applications to different flight tasks. Extensive simulations and benchmarks are also conducted to show its capability of generating high-quality solutions while retaining the computation speed against other specialized methods by orders of magnitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.