Abstract

KNTU CDRPM is a cable driven redundant parallel manipulator, which is under investigation for possible high speed and large workspace applications. This newly developed mechanisms have several advantages compared to the conventional parallel mechanisms. Its rotational motion range is relatively large, its redundancy improves safety for failure in cables, and its design is suitable for long-time high acceleration motions. In this paper, collision-free workspace of the manipulator is derived by applying fast geometrical intersection detection method, which can be used for any fully parallel manipulator. Implementation of the algorithm on the Neuron design of the KNTU CDRPM leads to significant results, which introduce a new style of design of a spatial cable-driven parallel manipulators. The results are elaborated in three presentations; constant-orientation workspace, total orientation workspace and orientation workspace.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.