Abstract

Recently, the plaque characterization field was explored with the use of the substrate (frequency domain analysis) rather than the envelope (amplitude or gray-scale imaging) of the intravascular ultrasound (IVUS) radiofrequency data. However, there is no data about the agreement of quantitative outcome between the two methods. The aim of this study was to assess the correlation and agreement between quantitative coronary ultrasound and the geometrical measurements provided by the spectral analysis of ultrasound radiofrequency data [IVUS-Virtual Histology (IVUS-VH), Volcano Therapeutics). Twenty-five patients were included in this study. The IVUS catheter used was a commercially available mechanical sector scanner (Ultracross 2.9 Fr 30 MHz catheter, Boston Scientific) covered with an outer sheath. IVUS-VH significantly underestimated lumen [relative difference (RD)=14.8+/-5.6; P<0.001], vessel (RD=14.1+/-4.8; P<0.001), and plaque (RD=11.5+/-10.8; P<0.001) cross-sectional areas (CSAs). Nevertheless, when adjusted for the ultrasound propagation delay caused by the sheath, relative differences of measurements were remarkably low (0.49%+/-6.3%, P=0.64 for lumen; 2.33%+/-4.6%, P=0.007 for vessel; and 4.2%+/-10.4%, P=0.005 for plaque CSA). These data suggest that the volumetric output of the IVUS-VH software underestimates measurements when acquired with a 30 MHz catheter. However, after applying a mathematical adjustment method for the ultrasound propagation delay caused by the outer sheath of the 30 MHz catheter, relative differences of direct measurements were negligible. These results suggest that ultrasound radiofrequency data analysis could provide, aside from precise compositional data, an accurate geometrical output.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.