Abstract

We investigate quantum quenches and the Loschmidt echo in the two dimensional, three band $\alpha-T_3$ model, a close descendant of the dice lattice. By adding a chemical potential to the central site, the integral of the Berry curvature of the bands in different valleys is continously tunable by the ratio of the hopping integrals between the sublattices. By investigating one and two filled bands, we find that dynamical quantum phase transition (DQPT), i.e. nonanalytical temporal behaviour in the rate function of the return amplitude, occurs for a certain range of parameters, independent of the band filling. By focusing on the effective low energy description of the model, we find that DQPTs happen not only in the time derivative of the rate function, which is a common feature in two dimensional models, but in the rate function itself. This feature is not related to the change of topological properties of the system during the quench, but rather follows from population inversion for all momenta. This is accompanied by the appearance of dynamical vortices in the time-momentum space of the Pancharatnam geometric phase. The positions of the vortices form an infinite vortex ladder, i.e. a macroscopic phase structure, which allows us to identify the dynamical phases that are separated by the DQPT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.