Abstract

We consider thin film light guides consisting of a transparent film of high refractive index deposited on a substrate of lower index. The propagation of light in such a two-dimensional transmission medium can be described within the limits of geometrical optics by an effective index of refraction N. Its value depends on the film thickness. Therefore, a light beam in the thin film guide is refracted or totally reflected at a step of film thickness. We discuss these phenomena (Snell's law) and demonstrate them experimentally, using ZnS films on glass as guides. As applications, we show a thin film prism and thin film lenses for guided light beams. By properly choosing the film thicknesses at both sides of the step, one can obtain an unusually large positive or negative wavelength dispersion of the refraction or, if desired, achromatic refraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.