Abstract

Recent research has been focused on the binder jetting (BJ) additive manufacturing technique due to the high potential possibilities in industrial applications. The actual limitation of BJ process can be attributed to the difficult control of the product quality. In fact, a high dimensional variation occurs on sintering, which can detrimentally affect dimensional and geometrical precision, when not properly considered in the design step. This paper aims at investigating the influence of sintering on the dimensional change of through holes, with different diameter size and different axis orientation with respect to the building direction. Samples were measured in the green and sintered state by means of a coordinate measuring machine in order to calculate the diameter shrinkage. The empirical data were successfully compared with the prevision of an analytical model demonstrating that diameter shrinkage is influenced by: the anisotropic dimensional change, the axis orientation and the position of the two diametral opposite points used to identify the diameter. A deep analysis of the results showed a non-negligible effect of the gravity-induced load and of the inhomogeneous shrinkage on sample geometry. This study highlighted that the analytical model may serve as a basis in the design step for improving the dimensional quality of BJ product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.