Abstract

One of the important tasks in five-axis machining of large sculptured surfaces is to control and reduce the machined errors. This paper presents the methods to control geometrical errors based on the establishment of the link between geometrical errors and the parameters of tool path planning. Nonlinear errors, which are the majority of geometrical errors during five-axis machining, are is strictly analysed and formulated. An adaptive step length method is proposed to control effectively the cutter contact path error. The measures to reduce the scallop error in machining of the large sculptured surfaces are discussed also. With the combination of this research with CAM software, both large Kaplan and Francis hydroturbine blades have been successfully machined. It shows that the machined errors can be controlled effectively and the machining efficiency can be improved in the machining of the large sculptured surfaces by the proposed methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call