Abstract

This paper investigates geometrical effects on the load transfer mechanism of off-ground capped pile groups subjected to vertical load by four three-dimensional numerical simulations, including a circular single pile, an X-shaped cross-sectional concrete (XCC) single pile, a 4 × 4 circular pile group, and a 4 × 4 XCC pile group. The ultimate bearing capacities of the XCC and circular piles within pile groups are approximately 0.86 and 0.74 times that of the XCC and circular single piles, respectively. The group efficiency of the XCC pile group is mainly improved by its side resistance. Comparing the XCC pile group to the circular pile group, the increment in side resistance is almost larger than the increment in pile perimeter, indicating that the pile geometry alters the load transfer mechanism via stress concentration and lateral stress arching. A nonuniform load distribution on piles within a capped pile group causes a bending moment along the pile shafts. The bending moment of XCC piles is smaller than that of circular piles because the raft stiffness of an XCC pile group is increased by its larger circumscribing pile diameter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.