Abstract

Finite geometry has found applications in many different fields and practical environments. We consider one such application, to the theory of secret sharing, where finite projective geometry has proved to be very useful, both as a modelling tool and as a means to establish interesting results. A secret sharing scheme is a means by which some secret data can be shared among a group of entities in such a way that only certain subsets of the entities can jointly compute the secret. Secret sharing schemes are useful for information security protocols, where they can be used to jointly protect cryptographic keys or provide a means of access control. We review the contribution of finite projective geometry to secret sharing theory, highlighting results and techniques where its use has been of particular significance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.