Abstract

ABSTRACTThe phase and group velocity surfaces are essential for wave propagation in anisotropic media. These surfaces have certain features that, especially, for shear waves result in complications for modelling and inversion of recorded wavefields. To analyse wave propagation in an anisotropic model, it is important to identify these features in both the phase and group domains. We propose few characteristics for this analysis: the energy flux angle, decomposed in the polar and azimuth angle correction angles and enhancement factor, which is able to characterize both singularity points and triplication zones. The very simple equation that controls the triplications is derived in the phase domain. The proposed characteristics are illustrated for elastic and acoustic anisotropic models of different symmetry classes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.