Abstract

The geometry of turbulent/non-turbulent interfaces (TNTIs) arising from flows with and without mean shear is investigated using direct numerical simulations of turbulent planar jets (PJET) and shear free turbulence (SFT), respectively, with Taylor Reynolds number of about Reλ≈100. In both flows, the TNTI is preferentially aligned with the tangent to the TNTI displaying convex, where the turbulent fluid nearby tends to have a stronger enstrophy, more frequently than concave shapes. The different flow configurations are reflected in different orientations of the TNTI with respect to the flow direction (and its normal). While the interface orientation with respect to the mean flow direction in PJET has an influence on the velocity field near the TNTI and the enstrophy production in the turbulent sublayer, there is no particular discernible dependence on the interface orientation in SFT. Finally, the intense vorticity structures or “worms,” which are possibly associated with “nibbling” entrainment mechanism, “feel” the local geometry of the TNTI, and it is shown that in PJET, a smaller local radius of these structures arises in regions near the TNTI where the local TNTI faces the mean flow direction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call