Abstract

Linear Fresnel concentrators (LFR) are widely seen by the scientific community as one of the most promising systems for the production of solar energy via thermal plants or concentrated photovoltaics. The produced energy depends on the optical efficiency of the LFR, which is mainly dictated by the geometry of the plant. For this reason, the analysis of LFR geometry and its effects on optical behavior is a crucial step in the design and optimization of a Fresnel plant. The theoretical and computational tools used to model the optics of a LFR are fundamental in research on energy production. In this review, geometrical aspects of the optics of linear Fresnel concentrators are presented, with a detailed discussion of the parameters required to define the geometry of a plant and of the main optical concepts. After an overview of the literature on the subject, the main part of the review is dedicated to summarising useful formulas and outlining general procedures for optical simulations. These include (i) a ray-tracing procedure to simulate a mirror field, and (ii) a fast quasi-analytical method useful for optimizations and on-the-fly computations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call