Abstract
We study novel geometrical and transport properties of a 2D model of disordered fibre networks. To assess the geometrical structure we determine, analytically, the probability distribution for the number of fibre intersections and resulting segment sizes in the network as a function of fibre density and length. We also determine, numerically, the probability distribution of pore perimeters and areas. We find a non-monotonous behavior of the perimeter distribution whose main features can be explained by solving for two simplified models of the line network. Finally we formulate a mean field approximation to conduction, above the percolation threshold, using the derived results. Relevance of the results to fracture networks will be discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.