Abstract

We revisit the interpretation of the cylindrically symmetric, static vacuum Levi-Civita metric, known in either Weyl, Einstein–Rosen, or Kasner-like coordinates. The Komar mass density of the infinite axis source arises through a suitable compactification procedure. The Komar mass density mu _{K} calculated in Einstein–Rosen coordinates, when employed as the metric parameter, leads to a number of advantages. It eliminates double coverages of the parameter space, vanishes in flat spacetime and when small, it corresponds to the mass density of an infinite string. After a comprehensive analysis of the local and global geometry, we proceed with the physical interpretation of the Levi-Civita spacetime. First we show that the Newtonian gravitational force is attractive and its magnitude increases monotonically with all positive mu _{K}, asymptoting to the inverse of the proper distance in the radial direction. Second, we reveal that the tidal force between nearby geodesics (hence gravity in the Einsteinian sense) attains a maximum at mu _{K}=1/2 and then decreases asymptotically to zero. Hence, from a physical point of view the Komar mass density of the Levi-Civita spacetime encompasses two contributions: Newtonian gravity and acceleration effects. An increase in mu _{K} strengthens Newtonian gravity but also drags the field lines increasingly parallel, eventually transforming Newtonian gravity through the equivalence principle into a pure acceleration field and the Levi-Civita spacetime into a flat Rindler-like spacetime. In a geometric picture the increase of mu _{K} from zero to infty deforms the planar sections of the spacetime into ever deepening funnels, eventually degenerating into cylindrical topology in an appropriately chosen embedding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.