Abstract

Electromechanically active nano/microfibers are promising components of sensors and actuators; however, piezoelectric polymers are normally expensive. To address this issue, this study examined the geometrical and electrostatic densities of an inexpensive highly sparse as-electrospun atactic polystyrene microfiber mat. The densities of porous individual fibers and the highly sparse fiber mat were experimentally determined to be 0.88 and 0.051 g cm−3, respectively, with corresponding material filling ratios of 80 % and 4.7 %, respectively. A high theoretical surface charge density of approximately 1.4 × 10−3 C m−2 was determined for the fiber mat after excluding air spaces in both individual fibers and the mat. These findings provide a pathway to outstanding electrets that are ultra-lightweight and have high charge densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.