Abstract

The structures of pure gold and silver clusters (Auk, Agk, k = 1−13) and neutral and anionic gold−silver binary clusters (AumAgn, 2 ≤ k = m + n ≤ 7) have been investigated by using density functional theory (DFT) with generalized gradient approximation (GGA) and high level ab initio calculations including coupled cluster theory with relativistic ab initio pseudopotentials. Pure Auk clusters favor 2-D planar configurations, while pure Agk clusters favor 3-D structures. In the case of Au, the valence orbital energies of 5d are close to that of 6s. This allows the hybridization of 6s and 5d orbitals in favor of planar structures of Auk clusters. Even 1-D linear structures show reasonable stability as local minima (or as global minima in a few small anionic clusters). This explains the ductility of gold. On the other hand, the Ag-4d orbital has a much lower energy than the 5s. This prevents hybridization, and so the coordination number (Nc) of Ag in Agk tends to be large in s-like spherical 3-D coordination i...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.