Abstract
Point configurations have been widely used as model systems in condensed-matter physics, materials science, and biology. Statistical descriptors, such as the n -body distribution function g(n), are usually employed to characterize point configurations, among which the most extensively used is the pair distribution function g(2). An intriguing inverse problem of practical importance that has been receiving considerable attention is the degree to which a point configuration can be reconstructed from the pair distribution function of a target configuration. Although it is known that the pair-distance information contained in g(2) is, in general, insufficient to uniquely determine a point configuration, this concept does not seem to be widely appreciated and general claims of uniqueness of the reconstructions using pair information have been made based on numerical studies. In this paper, we present the idea of the distance space called the D space. The pair distances of a specific point configuration are then represented by a single point in the D space. We derive the conditions on the pair distances that can be associated with a point configuration, which are equivalent to the realizability conditions of the pair distribution function g(2). Moreover, we derive the conditions on the pair distances that can be assembled into distinct configurations, i.e., with structural degeneracy. These conditions define a bounded region in the D space. By explicitly constructing a variety of degenerate point configurations using the D space, we show that pair information is indeed insufficient to uniquely determine the configuration in general. We also discuss several important problems in statistical physics based on the D space, including the reconstruction of atomic structures from experimentally obtained g(2) and a recently proposed "decorrelation" principle. The degenerate configurations have relevance to open questions involving the famous traveling salesman problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.