Abstract
Chern-Simons type gauge field is generated by the means of singular area preserving transformations in the lowest Landau level of electrons forming fractional quantum Hall state. Dynamics is governed by the system of constraints which correspond to the Gauss law in the non-commutative Chern-Simons gauge theory and to the lowest Landau level condition in the picture of composite fermions. Physically reasonable solution to this constraints corresponds to the Laughlin state. It is argued that the model leads to the non-commutative Chern-Simons theory of the QHE and composite fermions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.