Abstract

The geometric theory of additive separation of variables is applied to the search for multiplicative separated solutions of the bi-Helmholtz equation. It is shown that the equation does not admit regular separation in any coordinate system in any pseudo-Riemannian space. The equation is studied in the four coordinate systems in the Euclidean plane where the Helmholtz equation and hence the bi-Helmholtz equation is separable. It is shown that the bi-Helmoltz equation admits non-trivial non-regular separation in both Cartesian and polar coordinates, while it possesses only trivial separability in parabolic and elliptic–hyperbolic coordinates. The results are applied to the study of small vibrations of a thin solid circular plate of uniform density which is governed by the bi-Helmholtz equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.